

National Qualifications EXEMPLAR PAPER ONLY

EP24/AH/01

Mathematics

Marking Instructions

These Marking Instructions have been provided to show how SQA would mark this Exemplar Question Paper.

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purpose, written permission must be obtained from SQA's Marketing team on permissions@sqa.org.uk.

Where the publication includes materials from sources other than SQA (ie secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the user's responsibility to obtain the necessary copyright clearance.

General Marking Principles for Advanced Higher Mathematics

This information is provided to help you understand the general principles you must apply when marking candidate responses to questions in this Paper. These principles must be read in conjunction with the Detailed Marking Instructions, which identify the key features required in candidate responses.

- (a) Marks for each candidate response must <u>always</u> be assigned in line with these General Marking Principles and the Detailed Marking Instructions for this assessment.
- (b) Marking should always be positive. This means that, for each candidate response, marks are accumulated for the demonstration of relevant skills, knowledge and understanding: they are not deducted from a maximum on the basis of errors or omissions.
- (c) Candidates may use any mathematically correct method to answer questions except in cases where a particular method is specified or excluded.
- (d) Working subsequent to an error must be followed through, with possible credit for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working is easier, candidates lose the opportunity to gain credit.
- (e) Where transcription errors occur, candidates would normally lose the opportunity to gain a processing mark.
- (f) Scored-out or erased working which has not been replaced should be marked where still legible. However, if the scored-out or erased working has been replaced, only the work which has not been scored out should be judged.
- (g) Unless specifically mentioned in the Detailed Marking Instructions, do not penalise:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in solutions
 - repeated errors within a question

Definitions of Mathematics-specific command words used in this Exemplar Question Paper

Determine: determine an answer from given facts, figures, or information.

Expand: multiply out an algebraic expression by making use of the distributive law or a compound trigonometric expression by making use of one of the addition formulae for $sin(A \pm B)$ or $cos(A \pm B)$.

Express: use given information to rewrite an expression in a specified form.

Find: obtain an answer showing relevant stages of working.

Hence: use the previous answer to proceed.

Hence, or otherwise: use the previous answer to proceed; however, another method may alternatively be used.

Prove: use a sequence of logical steps to obtain a given result in a formal way. **Show that:** use mathematics to show that a statement or result is correct (without the formality of proof) — all steps, including the required conclusion, must be shown. **Sketch:** give a general idea of the required shape or relationship and annotate with all relevant points and features.

Solve: obtain the answer(s) using algebraic and/or numerical and/or graphical methods.

Detailed Marking Instructions for each question

Qı	uestion	Expected response (Give one mark for each •)	Max mark	Additional guidance (Illustration of evidence for awarding a mark at each •)
1		Ans: $\frac{x^{10}}{243} - \frac{10x^7}{81} + \frac{40x^4}{27} - \frac{80x}{9} + \frac{80}{3x^2} - \frac{32}{x^5}$	4	
		$ullet^1$ correct unsimplified expansion		•1
				$= {}^{5}C_{0}\left(\frac{x^{2}}{3}\right)^{5} + {}^{5}C_{1}\left(\frac{x^{2}}{3}\right)^{4}\left(\frac{-2}{x}\right)^{1} + {}^{5}C_{2}\left(\frac{x^{2}}{3}\right)^{3}\left(\frac{-2}{x}\right)^{2}$
				$+{}^{5}C_{3}\left(\frac{x^{2}}{3}\right)^{2}\left(\frac{-2}{x}\right)^{3}+{}^{5}C_{4}\left(\frac{x^{2}}{3}\right)\left(\frac{-2}{x}\right)^{4}+{}^{5}C_{5}\left(\frac{-2}{x}\right)^{5}$
		• ² fully simplified powers of x		$\bullet^{2, 3, 4} = \frac{x^{10}}{243} - \frac{10x^7}{81} + \frac{40x^4}{27} - \frac{80x}{9} + \frac{80}{3x^2} - \frac{32}{x^5}$
		• ³ powers of 3 and binomial coefficients		
		OR		
		powers of -2 correct		
		• ⁴ complete and simplifies correctly		
Not	es:	I		
1.1 1.2	Accept n Coefficie	egative powers of x . nts must be fully processed to simplif	ied frac	tions and whole numbers.
2	a	Ans: $e^{\cos x} \cdot 2\sin x \cos x + \sin^2 x \cdot e^{\cos x} (-\sin x)$	3	
		• ¹ evidence of product rule		• ¹ see 2.1
		• ² first term		$e^2 e^{\cos x} \cdot 2\sin x \cos x + \dots$
		• ³ second term		• ³ + sin ² x.e ^{cos x} (-sin x)
2	b	Ans: $f'(x) = \frac{4x}{(x^2 + 1)^2}$	3	
		 ●⁴ know to use quotient (or product) rule 		• ⁴ $f'(x) = \frac{(x^2 + 1) \cdot 2x - (x^2 - 1) \cdot 2x}{(x^2 + 1)^2}$
		● ⁵ correct derivative, using either rule, unsimplified		$\bullet^5 = \frac{2x^3 + 2x - 2x^3 + 2x}{(x^2 + 1)^2}$

	• ⁶ simplify answer	$\bullet^6 = \frac{4x}{\left(x^2 + 1\right)^2}$
		OR
	• ⁴ use polynomial division (or inspection) correctly simplify $f(x)$	• $f(x) = 1 - \frac{2}{x^2 + 1}$
	• ⁵ correctly complete first step	• ⁵ $f'(x) = -1(-2)(x^2 + 1)^{-2}$
		$\times (2x)$
	 ⁶ apply chain rule and simplify answer 	• ⁶ :: $f'(x) = 4x(x^2 + 1)^{-2}$
		$=\frac{4x}{\left(x^2+1\right)^2}$

2.1 Evidence of method: statement of the rule and evidence of progress in applying it.

OR Application showing the **sum** of two terms, both involving differentiation.

2.2 Sign switched $\bullet^1 \bullet^3$ available for $e^{\cos x} \sin^3 x - e^{\cos x} 2 \sin x \cos x$ or equivalent.

2.4 Evidence of method: statement of the rule and evidence of progress in applying it.

OR Application showing the *difference* of two terms, both involving differentiation and a denominator.

2.5 Accept use of product rule with equivalent criteria for \bullet^4 .

3	Ans: $\lambda = -1$	5	
	• ¹ set up augmented matrix		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	• ² obtain zeroes in first elements of second and third rows		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	• ³ complete elimination to upper triangular form		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	• ⁴ obtain simplified expression for z		• ⁴ $(1+\lambda)z=3$, $z=\frac{3}{1+\lambda}$
	\bullet^5 statement based on expression at \bullet^4		• ⁵ $\lambda = -1$, accept $(\lambda \neq -1)$

Notes:

3.1 Row operations commentary not required for full credit. Methods not using augmented matrix may be acceptable.

2.2	Not	2000	ssan, to have unitary values for second	dolomo	$rac{1}{2}$
3.Z	3.2 Not necessary to have unitary values for second etements for ● .				
3.3	2.4 If lower triangular form used, will need to have simplified expression for 7				
3.4		wert	rhangular form used, will need to have	e simpu	filed expression for 2.
3.5	Acce	pt z	$=\frac{-3}{-1-\lambda}.$		
3.6	Also	acce	ept: when $\lambda = -1$ there are no solution	is $\lambda < -$	1 and $\lambda > -1$; $\lambda < -1$ or $\lambda > -1$.
4	a		Ans: $3e^{3t} + 2e^{t}$	2	
			 ¹ evidence of knowing to differentiate 		$\bullet^{1,2} \ \frac{dy}{dx} = 3e^{3t} \dots$
			• ² complete differentiation		$3e^{3t}+2e^{t}$
4	b		Ans: $\frac{38}{3}$ or $12\frac{2}{3}$ or equivalent	2	
			• ³ correctly set up integral		• ³ $s = \int_0^{\ln 3} v dt = \int_0^{\ln 3} \left(e^{3t} + 2e^t \right) dt$
			$ullet^4$ integrate and evaluate correctly		• 4 = $\left(\frac{1}{3}e^{3\ln 3} + 2e^{\ln 3}\right) - \left(\frac{1}{3} + 2\right)$
					$\frac{38}{3}$ or $12\frac{2}{3}$ or equivalent
Not	e:				
4.1	Acce	ept ro	ounded answers to 3 sf or better.		
5			Ans: $4\left(\cos\frac{2\pi}{3}+i\ \sin\frac{2\pi}{3}\right)$	4	
			$ullet^1$ correct statement of conjugate		$\bullet^1 z = 1 + \sqrt{3i}$
			• ² one of r, θ correct		• ^{2,3} $\overline{z} = 2\left(\cos\frac{\pi}{3} + i \sin\frac{\pi}{3}\right)$
			• ³ complete substitution		
			● ⁴ process answer		
			OR		
			• ² obtain \overline{z}^2 in Cartesian form		• ² $\overline{z}^2 = (1 + \sqrt{3}i)^2 = 1 + 2\sqrt{3}i - 3 = -2 + 2\sqrt{3}i$ $\overline{z}^2 = -2 + 2\sqrt{3}i = r(\cos\theta + i\sin\theta)$
			• ³ one of r , θ correct		

oenalise.
t form appears also.
range do not award \bullet^4 .
)
$\frac{13}{6} = \frac{-1}{2}$
ossible, leading to
$ \begin{array}{ccc} 16-2p & 5p \\ -10 & 1-2p \end{array} $
et $A^2 = 0$
is singular, ie when det
/ (not essential but
e note 7.1)

7	с	Ans: $x = 12$ and $p = \frac{1}{3}$	2	
		• ⁴ A transpose (A^T) correct. Does not have to be explicitly stated.		$\bullet^4 \begin{pmatrix} 4 & -2 \\ p & 1 \end{pmatrix}$
		● ⁵ values of <i>p</i> and <i>x</i> correct		• $\begin{pmatrix} x & -6 \\ 1 & 3 \end{pmatrix} = 3 \begin{pmatrix} 4 & -2 \\ p & 1 \end{pmatrix}$ • $\begin{pmatrix} x & -6 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 12 & -6 \\ 3p & 3 \end{pmatrix}$ $x = 12 \text{ and } p = \frac{1}{3}$

7.1 For (a) and (c), statement of answers only: award full marks. For (b), p = -2 only, award \bullet^3 only (1 out of 2).

7.2 Misinterpretation of A^T as inverse leading to p = 0 and $x = \frac{3}{4}$ OR to $p = -\frac{8}{3}$ and $x = -\frac{9}{4}$ OR to p = 1

and
$$x = \frac{1}{2}$$
.

OR any other set of inconsistent equations: do not award \bullet^4 or \bullet^5 , ie 0 out of 2.

7.3 Accept unsimplified answers.

7.4 Usually implied by next line.

7.5 For any equation based on answer to (a), correctly obtaining all possible solutions, including complex, $\bullet^2 \bullet^3$ both available. 'No solutions', 'not possible' etc \bullet^3 not available, even if true.

8	a	Ans: $1 - \frac{9x^2}{2} + \frac{27x^4}{8}$ • ¹ correct statement of series for $\cos x$ • ² substitute and evaluate coefficients	2	• $1 \cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \dots$ • $2 \cos 3x = 1 - \frac{(3x)^2}{2!} + \frac{(3x)^4}{4!} \dots$ $= 1 - \frac{9x^2}{2} + \frac{81x^4}{24} \dots$ $= 1 - \frac{9x^2}{2} + \frac{27x^4}{8} \dots$
		OR • ¹ correct differentiation and evaluation if doing from first principles		$f(x) = \cos 3x \qquad f(0) = 1$ $f'(x) = -3\sin 3x \qquad f'(0) = 0$ $f''(x) = -9\cos 3x \qquad f''(0) = -9$ $f'''(x) = 27\sin 3x \qquad f'''(0) = 0$ $f''''(x) = 81\cos 3x \qquad f'''(0) = 81$
8	b	Ans: $e^{2x} = 1 + 2x + 2x^2 + \frac{4x^3}{3}$	1	

		• ³ state series with correct substitution		• $e^{3} e^{2x} = 1 + 2x + 2x^{2} + \frac{4x^{3}}{3} \dots$
8	с	Ans: $=1+2x-\frac{5x^2}{2}-\frac{23x^3}{3}$ • ⁴ know to multiply the two previously obtained series together • ⁵ correctly multiply out brackets • ⁶ simplify to lowest terms	3	• ⁴ $e^{2x}\cos 3x = \left(1 - \frac{9x^2}{2} + \frac{27x^4}{8}\right)\left(1 + 2x + 2x^2 + \frac{4x^3}{3}\right)$ • ⁵ = 1 + 2x + 2x ² + $\frac{4x^3}{3} - \frac{9x^2}{2} - \frac{18x^3}{2}$ • ⁶ = 1 + 2x - $\frac{5x^2}{2} - \frac{23x^3}{3}$
		OR • ⁴ either all three derivatives correct OR first derivative and first two evaluations (above) OR all evaluations [not eased if at least one each of e^{2x} and $\sin/\cos 3x$] OR last two derivatives and last two evaluations correct		$f(x) = e^{2x} \cos 3x \qquad f(0) = 1$ $f'(x) = 2e^{2x} \cos 3x - 3e^{2x} \sin 3x f'(0) = 2$ $f''(x) = e^{2x} (-5\cos 3x - 12\sin 3x) f''(0) = -5$ $f''(x) = e^{2x} (-46\cos 3x - 9\sin 3x) f'''(0) = -46$
		● ⁵ remainder correct		• ⁵ $e^{2x}\cos 3x = 1 + 2x + \frac{(-5)x^2}{2!} + \frac{(-46)x^3}{3!} \dots$ $e^{2x}\cos 3x = 1 + 2x - \frac{5x^2}{2} - \frac{46x^3}{6} \dots$
		● ⁶ correct substitution of coefficients obtained at ● ⁴ into formula and simplify to lowest terms		$\bullet^6 = 1 + 2x - \frac{5x^2}{2} - \frac{23x^3}{3}$

8.1 Award \bullet^1 for substitution of 3x into series for $\cos x$. 8.2 Must have at least three terms for \bullet^1 if no further working. 8.3 Candidates may differentiate from first principles for any or all of the three required series for full credit.

8.4 For \bullet^5 and \bullet^6 ignore additional terms in x^4 or higher.

9		Ans: proof	3	
		● ¹ start proof		• ¹ (Given that x is irrational) 'assume that \sqrt{x} is rational'

Notes:•° complete proof•° x is rational, which is a contradiction, therefore the original statement is true10Ans: (0, 0) with justification5•° find 1 st derivative and begin to find 2 nd derivative•° $\frac{1}{dx} = \cos x + \sec^2 x$ •° complete 2 nd derivative•° $\frac{d^2 y}{dx^2} = -\sin x +$ •° complete 2 nd derivative•° $\frac{d^2 y}{dx^2} = -\sin x + 2(\cos x)^{-3} \sin x$ or equivalent•° $\frac{d^2 y}{dx^2} = -\sin x + 2(\cos x)^{-3} \sin x$ or equivalent•° $2\sin x - \sin x \cos^3 x = 0$		• ² set up number and process		• ² $\sqrt{x} = \frac{a}{b}$ (<i>a</i> , <i>b</i> natural numbers with no common factor) $x = \frac{a^2}{b^2}$
Notes: 10 Ans: $(0, 0)$ with justification		•° complete proof		• x is rational, which is a contradiction, therefore the original statement is true
10 Ans: (0, 0) with justification • ¹ find 1 st derivative and begin to find 2 nd derivative • ² complete 2 nd derivative • ³ set 2 nd derivative to zero and process • 1 $\frac{dy}{dx} = \cos x + \sec^2 x$ $\frac{d^2y}{dx^2} = -\sin x +$ • 2 $\frac{d^2y}{dx^2} = -\sin x + 2(\cos x)^{-3} \sin x$ or equivalent • 3 $2\sin x - \sin x \cos^3 x = 0$	Notes:			
• ¹ find 1 st derivative and begin to find 2 nd derivative • ¹ $\frac{dy}{dx} = \cos x + \sec^2 x$ $\frac{d^2 y}{dx^2} = -\sin x +$ • ² complete 2 nd derivative • ³ set 2 nd derivative to zero and process • ³ the set to be the term of term o	10	Ans: (0, 0) with justification	5	
• ² complete 2 nd derivative • ³ set 2 nd derivative to zero and process • 4 to be a whether the process • 2 $\frac{d^2y}{dx^2} = -\sin x + 2(\cos x)^{-3} \sin x$ or equivalent • 3 $2\sin x - \sin x \cos^3 x = 0$		• ¹ find 1 st derivative and begin to find 2 nd derivative		• 1 $\frac{dy}{dx} = \cos x + \sec^2 x$ $\frac{d^2 y}{dx^2} = -\sin x + \dots$
• ³ set 2 nd derivative to zero and process • ³ $2\sin x - \sin x \cos^3 x = 0$		• ² complete 2 nd derivative		• ² $\frac{d^2 y}{dx^2} = -\sin x + 2(\cos x)^{-3}\sin x$ or equivalent
		• ³ set 2 nd derivative to zero and process		$\bullet^3 2\sin x - \sin x \cos^3 x = 0$
• solve to find potential POI • sin $x = 0$, leads to $x = 0, y = 0$		• ⁴ solve to find potential POI		• $\sin x = 0$, leads to $x = 0, y = 0$
$ \begin{array}{ c c c c } \bullet^{5} \text{ check for } 2^{\text{nd}} \text{ derivative change} \\ \text{of sign} \end{array} \qquad \begin{array}{ c c c } x & 0^{-} & 0 & 0^{+} \\ \bullet^{5} & \frac{d^{2}y}{dx^{2}} & - & 0 & + \end{array} \\ \end{array} $		• ⁵ check for 2 nd derivative change of sign		

10.1 \bullet^5 Candidates may refer to the curve's change of concavity.

	·				
11		Ans: reflection in the line with equation $y = x$			
	a	• ¹ correct reflection matrix M_1	1		
	b	• ² correct rotation matrix M_2	1		
	с	• ³ evaluation of M_3	1	$\bullet^{3} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	
	d	• ⁴ correct transformation consistent with candidate's M_3	1	• ⁴ reflection in the line with equation $y = x$	
Not	Notes:				

12	Ans: proof	5	
	• ¹ test for $n=1$		• ¹ LHS = $\frac{1}{1 \times 2} = \frac{1}{2}$ RHS= $1 - \frac{1}{2} = \frac{1}{2}$ so true when $n = 1$
	\bullet^2 state assumption		• ² assume true for $n = k$, $\sum_{r=1}^{k} \frac{1}{r(r+1)} = 1 - \frac{1}{k+1}$
	• ³ consider $n = k + 1$		• ³ $\sum_{r=1}^{k+1} \frac{1}{r(r+1)} = \sum_{r=1}^{k} \frac{1}{r(r+1)} + 1 - \frac{1}{(k+1)(k+2)}$ = $1 - \frac{1}{k+1} + \frac{1}{(k+1)(k+2)}$
	• ⁴ process		• ⁴ = 1 - $\frac{k+2-1}{(k+1)(k+2)} = 1 - \frac{k+1}{(k+1)((k+1)+1)}$
	● ⁵ complete proof		• ⁵ Thus, if true for $n = k$, statement true for $n = k + 1$, but since true for $n = 1$, by mathematical induction, true for all $n \ge 1$.

12.1 Statement of conclusion can only gain \bullet^5 if clear attempt at processing is shown at \bullet^4 . 12.2 Candidates may approach the question by stating the 'target result' with n = k + 1 before starting processing for \bullet^4 . This is a valid method.

13	Ans: 9π units ³	5	
	• ¹ correctly identify circle equation		• $(x-1)^2 + y^2 = 4$ or equivalent
	• ² correct form of integral and limits		$\bullet^2 V = \pi \int_0^3 y^2 dx.$
	• ³ substitute		• ³ = $\pi \int_0^3 (4 - (x - 1)^2) dx$
	● ⁴ integrate		• $4 = \pi \left[4x - \frac{1}{3}(x-1)^3 \right]_0^3$
	● ⁵ evaluate		• ⁵ = 9 π units ³

Notes:

13.1 Accept any version of circle equation.

13.2 Circle may be translated 1 unit left with appropriate equation and limits used.

13.3 For a numerical answer of 28.3 or better to gain \bullet^4 the result in terms of x must be shown. 13.4 'units³' not required.

14	a	Ans: diagram	2			
		• ¹ straight line with negative gradient crossing the positive sections of the x and y axes		(0,2)		
		• ² both intersections correctly annotated		$\bullet^{1,2} 0 (c,0) x \bullet$		
14	b	Ans: $k = -c$	1			
		• ³ correct value of k		• ³ $y = f(x) - c$ is odd therefore, $k = -c$		
14	с	Ans: $h = 2$	2			
		• ⁴ sketch of $y = f(x) $ with point of reflection marked		• ⁴ 0 (2,0) x		
		$ullet^5$ explicit statement of answer		• ⁵ $y = f(x+2) $ is even therefore, $h = 2$		
Note	es:					
15		Ans: $\frac{1}{\sqrt{2}}$	5			
		• ¹ process solution to obtain both limits for θ		• $x = 1$ and $x = 0$ become $\theta = \frac{\pi}{4}$ and $\theta = 0$		
		• ² correctly replace all terms		$\bullet^2 \int_0^{\frac{\pi}{4}} \frac{\sec^2 \theta d\theta}{\left(1 + \tan^2 \theta\right)^{\frac{3}{2}}}$		
		• ³ replace $1 + \tan^2 \theta$ with $\sec^2 \theta$		$\bullet^3 \int_0^{\frac{\pi}{4}} \frac{\sec^2 \theta d\theta}{\left(\sec^2 \theta\right)^{\frac{3}{2}}}$		
		$ullet^4$ simplify to integrable form				
		$ullet^5$ integrate and evaluate correctly		$\bullet^5 \left[\sin\theta\right]_0^{\frac{\pi}{4}} = \frac{1}{\sqrt{2}}$		
Note	e:	I	I	· · · · · · · · · · · · · · · · · · ·		
15.1 x limits can be kept during working provided integral expression is expressed back in terms of x .						

16	a	Ans: $\mathbf{r}_1 = \begin{pmatrix} 2\\4\\1 \end{pmatrix} + \lambda \begin{pmatrix} 1\\2\\-1 \end{pmatrix}$ $\mathbf{r}_2 = \begin{pmatrix} -5\\2\\5 \end{pmatrix} + \lambda \begin{pmatrix} -4\\4\\1 \end{pmatrix}$	2	
		• ¹ L_1 equation correct (can be written using column vectors or i , j , k)		• ¹ $r_1 = p + \lambda u_1$ where $p = \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$
		• ² L_2 equation correct (can be written using column vectors or i , j , k)		• ² $r_2 = q + \mu u_2$ where $q = \begin{pmatrix} -5 \\ 2 \\ 5 \end{pmatrix}$
16	b	Ans: lines intersect at $(-1, -2, 4)$	4	
		• ³ two equations for two parameters		• ³ $2 + \lambda = -5 - 4\mu$ $4\mu + \lambda = -7$
		• ⁴ two parameter solutions		$4 + 2\lambda = 2 + 4\mu \qquad \underline{4\mu - 2\lambda = 2}$ $\bullet^{4} 1 - \lambda = 5 + \mu \qquad \lambda = -3$ $\mu = -1$
		• ⁵ check third component in both equations		• $z_1 = 1 - (-3)$ $z_2 = 5 + (-1)$ = 4 = 4
		• ⁶ point of intersection		• Since $z_1 = z_2$, the lines intersect at $(-1, -2, 4)$
16	С	Ans: $2x + y + 4z = 12$ or equivalent	3	
		• ⁷ correct strategy to find normal		• ⁷ $\begin{vmatrix} i & j & k \\ 1 & 2 & -1 \\ -4 & 4 & 1 \end{vmatrix}$ or $\begin{bmatrix} i & j & k & i & j \\ 1 & 2 & -1 & 1 & 2 \\ -4 & 4 & 1 & -4 & 4 \end{bmatrix}$
		● ⁸ normal vector		= i(2+4) - j(1-4) + k(4+8) = 6i+3j+12k

	• ⁹ find value for constant and equation		• $6x + 3y + 12z = \begin{pmatrix} 6\\3\\12 \end{pmatrix}$. (Point of intersection) = 36	

16.1 In (a), lines written in parametric or symmetric forms would gain only 1 mark out of 2 available. 16.2 In (c), the plane equation can be given in vector form, eg $r = a + su_1 + tu_2$ where a is position vector of a point on the plane and $s, t \in \mathbf{R}$.

17	a	Ans: $y = Ae^{-x} + Be^{2x} - \frac{1}{2}e^{x} - 6$	7	
		 ¹ set up auxilary equation 		• $m^2 - m - 2$
		• ² solutions to AE		• $(m-2)(m+1) = 0$ m = -1 or m = 2
		• ³ state complementary function		$\bullet^3 y = Ae^{-x} + Be^{2x}$
		• ⁴ state particular integral		• ⁴ $y = Ce^x + D$
		● ⁵ process		• ⁵ $\frac{dy}{dx} = Ce^x \Rightarrow \frac{d^2y}{dx^2} = Ce^x$
		ullet 6 calculate C and D		• $\frac{d^2 y}{dx^2} - \frac{dy}{dx} - 2y = e^x + 12$
				$\begin{bmatrix} Ce \\ -2Ce^{x} - 2D = e^{x} + 12 \end{bmatrix} = e^{x} + 12$
				Hence, $C = -\frac{1}{2}$ and $D = -6$
		$ullet^7$ state general solution		• ⁷ $y = Ae^{-x} + Be^{2x} - \frac{1}{2}e^{x} - 6$
17	b	Ans: $y = 3e^{-x} + 2e^{2x} - \frac{1}{2}e^x - 6$	3	
		• ⁸ set up equations		• ⁸ $x = 0$ and $y = -\frac{3}{2} \Rightarrow A + B - \frac{1}{2} - 6 = -\frac{3}{2}$
				$x=0$ and $\frac{dy}{dx}=\frac{1}{2} \Rightarrow -A+2B-\frac{1}{2}=\frac{1}{2}$

		• ⁹ process to find A and B		• ⁹ $3B-7=-1 \Rightarrow B=2 \Rightarrow A=3$
		• ¹⁰ state particular solution		• ¹⁰ $y = 3e^{-x} + 2e^{2x} - \frac{1}{2}e^{x} - 6$
Not	es:		1	
18	a	Ans: proof	2	
		• ¹ express related rates of change		Method 1Method 2 $V = Ah$ $V = Ah$
		• ² complete 'show that'		$\frac{dh}{dt} = \frac{dh}{dV} \cdot \frac{dV}{dt} \bullet^{1} \text{or} \frac{dV}{dt} = \frac{d}{dt} (Ah) \bullet^{1}$ $\frac{dV}{dh} = A^{*} \qquad -k\sqrt{h} = A\frac{dh}{dt}$
				$ \therefore \frac{dn}{dV} = \frac{1}{A}^{*} \qquad \qquad \frac{Adn}{dt} = -k\sqrt{h} \qquad \bullet^{2} $ $ = \frac{1}{A} - k\sqrt{h} \qquad \bullet^{2} \qquad \frac{dh}{dt} = \frac{-k}{A}\sqrt{h} $ $ = \frac{-k}{A}\sqrt{h} \qquad \qquad \bullet^{2} \qquad \qquad \bullet^{2} \qquad$
18	b	Ans: proof	4	
		• ³ substitute values		$\frac{dh}{dt} = -0.3 \text{ cm/hr when } h = 144$ $\bullet^{3} -0.3 = -\frac{k}{A}\sqrt{144}$ $\frac{k}{A} = \frac{1}{40} \therefore A = 40k$
		• ⁴ separate variables		• $\int \frac{1}{\sqrt{h}} dh = \int \frac{-k}{A} dt \text{or}$ $\int \frac{1}{\sqrt{h}} dh = \int -\frac{1}{40} dt$
		• ⁵ integrate correctly		• ⁵ $2\sqrt{h} = \frac{-k}{A}t + c$

		• ⁶ evaluate constant and complete rearrangement		$\bullet^{6} 2\sqrt{144} = c \qquad c = 24$ $2\sqrt{h} = \frac{-k}{A}t + 24$ $\sqrt{h} = \frac{-k}{2A}t + 12$ $h = \left(\frac{-k}{2A}t + 12\right)^{2}$ $h = \left(\frac{-1}{80}t + 12\right)^{2}$
18	с	Ans: 40 days	2	
		• ⁷ know to set to zero		$\bullet^7 0 = \left(-\frac{1}{80}t + 12\right)^2$
		• ⁸ calculate the number of days		t = 960 hours number days $= \frac{960}{24} = 40$ days
18	d	Ans: rate to vegetation is $108\pi(\text{cm}^3/\text{hr})$	3	
		• ⁹ find k		•9 $A = 400 \pi$, so $\frac{k}{A} = \frac{1}{40}$ $k = 10 \pi$
		• ¹⁰ calculate h or \sqrt{h}		• ¹⁰ $h = \left(\frac{-1}{80}.96 + 12\right)^2 = \left(\frac{54}{5}\right)^2$
		• ¹¹ process to and interpret answer for $\frac{dV}{dt}$		$\bullet^{11} \frac{dV}{dt} = -108 \pi [\text{cm}^3/\text{hr}]$

18.1 In (a), one or both of the * lines needed for method 1. 18.2 In (c), accept any numerical answer rounding to 339. Do not penalise the omission of units. 18.3 In (c), accept the omission of a negative sign for $\frac{dV}{dt}$ provided interpretation, eg as in the answer above demonstrates understanding of the context of the problem. 18.4 $A = \frac{dV}{dt} = 119 \cdot 5\pi \text{ cm}^3/\text{hr}$ which comes from taking t = 4. Do not award \bullet^{10} . 18.5 Using h = 144 in part (d) leading to 377, do not award \bullet^{10} or \bullet^{11} . 18.6 Do not penalise the omission of integration symbols. 18.7 Where candidates use 144 instead of 0 initially, \bullet^7 lost, but \bullet^8 available if resulting quadratic solved correctly to obtain both t = 0 and t = 1920, discarding t = 0 answer and converting to 80 days.

[END OF EXEMPLAR MARKING INSTRUCTIONS]